B.Sc. (Honours) Part-I Paper-IA Topic: Ionic Product of Water UG

Subject-Chemistry

Dr. Laxman Singh
Asst. Professor
Department of Chemistry
R.R.S. College (PPU)
(Mokama, Patna)

Ionic Product of Water

Water is a weak electrolyte and undergoes selfionistion to a small extent.

"The product of concentrations of H⁺ and OH⁻ ions in water at a particular temperature is known as ionic

product of water." It is designated as Kw.

Ionic Product of Water

The ion product of water

 $Hydrogenion(H^+)$ is key=It indicates the acidity @ basicity of the solution

Equilibrium constant for the auto ionization of water

$$H_2O(l)$$
 + $OH^-(aq)$

$$K_c = [H^+] [OH^-]$$

Since, the degree of dissociation of water is extremely small, the concentration of water can be

considered constant

$$K_c[H_2O] = \mathbf{K}\mathbf{w} = [\mathbf{H}^+][\mathbf{O}\mathbf{H}^-]$$

$$Kw = (1.0 \times 10^{-7} \text{ moldm}^{-3}) (1.0 \times 10^{-7} \text{ moldm}^{-3}) = 1.0 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$$

Theionic product of water can be expressed in terms of pKw, where

$$\mathbf{pK_w} = -\log \mathbf{K_w} = -\log(1.0 \times 10^{-14}) = 14$$

From the expression:

$$\mathbf{K_{\mathbf{w}}} = [\mathbf{H}^{+}][\mathbf{OH}^{-}]$$

The value of K_w increases with the increase of temperature, i.e., the concentration H^+ and OH^- ions increases with increase in temperature.

The Equilibrium Constant for this Reaction, $K_{\underline{w}}$, is called the Ionic Product for Water

Another expression anbedisc by taking the (-log) of the $\boldsymbol{K}_{\boldsymbol{W}}$ expression

$$\mathbf{pK}_{\mathbf{W}} = \mathbf{P}^{\mathbf{OH}} + \mathbf{p}^{\mathbf{H}}$$

Thus if P^{OH} of the solution is known, its P^{H} value can be calculated from the above relationship

Measurement of Acidity and basicity

pH of the solution

The P^H of solution is defined as negative logarithm of the hydrogen ion concentration (in mol/L)

$$p^{H} = -\log [H^{+}]$$

Neutral if, $[H^{+}] = [OH^{-}]; pH = 7$

Acidic if, [H⁺]>[OH⁻];pH<7

Basic if, [H⁺]<[OH⁻]; pH>7

The P^{OH} of solution is defined as negative logarithm of the hydroxyl ion concentration (in mol/L)

p^{OH}=-log[OH]